Das Pandemievirus Sars-CoV-2 mutiert fortlaufend. Genauso wie die Omikron-Varianten letzten November können neue Mutaten die Welt unvorbereitet treffen. Fragen wie zum Beispiel: «Wie gut sind geimpfte und genesene Menschen gegen die neue Variante geschützt?» oder «Sind die Antikörpertherapien gegen die neue Variante immer noch wirksam?» konnte anfangs noch niemand beantworten.
Nun haben Forschende um Sai Reddy, Professor am Departement für Biosysteme der ETH Zürich in Basel, eine Methode entwickelt, um solche Fragen mit Hilfe von künstlicher Intelligenz zu beantworten – «allenfalls sogar in Echtzeit unmittelbar nachdem eine neue Variante auftaucht», wie die ETH in einer Medienmitteilung schreibt.
Möglichen Varianten auf der Spur
Weil sich Viren zufällig verändern, weiss heute niemand, wie sich das Pandemievirus in den kommenden Monaten und Jahren genau entwickeln wird und welche Varianten in Zukunft dominieren werden. Die theoretischen Möglichkeiten, wie das Virus mutieren kann, seien immens.
Das gelte schon, wenn man nur einen kleinen Teil des Virus betrachte: das Stachelprotein von Sars-CoV-2, das bei der Infektion des menschlichen Körpers und der Abwehr durch das Immunsystem eine zentrale Rolle spiele. Alleine in den dafür wichtigen Regionen dieses Proteins gebe es zig Milliarden Möglichkeiten, wie sich der genetische Code theoretisch verändern könne.
Mit der neuen Variant wollen die Forschenden deshalb aufs Ganze gehen: Für jede einzelne in dieser Vielzahl potenzieller Virusvarianten sagt sie voraus,
- ob sie menschliche Zellen zu infizieren vermag und
- ob sie von Antikörpern, die das Immunsystem von geimpften und genesenen Personen produziert, erkennt und neutralisiert wird.
«Mit grosser Wahrscheinlichkeit befindet sich unter diesen potenziellen Varianten diejenige auch jene, welche die nächste Phase der Covid-19-Pandemie dominieren wir», so die Vermutung.
Keine lebenden Viren im Test
Als Grundlage für ihre Methode erzeugten Reddy und sein Team im Labor eine grosse Sammlung mutierter Varianten des Sars-CoV-2-Stachelproteins. Sie arbeiteten dabei nicht mit lebenden Viren, sondern nur mit einem Teil des Stachelproteins. Es bestand somit keine Gefahr, dass lebende Viren aus dem Labor entweichen konnten.
Das Stachelprotein heftet sich während einer Infektion an das sogenannte ACE2-Protein auf der Oberfläche von menschlichen Zellen; die Antikörper von geimpften oder genesenen Personen sowie solche in Antikörpermedikamenten wirken, indem sie diesen Mechanismus blockieren.
Viele der Mutationen in den bisherigen Sars-CoV-2-Varianten traten an dieser Andockstelle des Stachelproteins auf, was es diesen Varianten ermöglichte, dem Immunsystem zu entgehen und sich weiter auszubreiten.
Die von den Basler Forschern geschaffene Sammlung umfasst zwar nicht alle theoretisch möglichen Varianten –«es wäre kaum möglich, im Labor mehrere Milliarden Varianten zu testen», heisst es. Doch immerhin eine Million Varianten konnten gesammelt werden. Diese tragen verschiedene Mutationen oder Kombinationen von Mutationen.
Mit Hochdurchsatzmethoden und mit der Sequenzierung der DNA dieser Million Varianten ermittelten die Forschenden, wie diese Varianten mit dem ACE2-Protein und mit bestehenden Antikörpermedikamenten wechselwirkten. Ihre Daten geben Aufschluss darüber, wie gut die einzelnen Varianten potenziell menschliche Zellen infizieren und wie gut sie den Antikörpern ausweichen können.
Vorhersage im Computermodellen
Anschliessend nutzten die Forschenden die gesammelten Daten, um Modelle des maschinellen Lernens zu trainieren. Diese Modelle können nun aufgrund der DNA-Sequenz einer Variante genau vorhersagen, ob diese Variante in der Lage ist, an das ACE2-Protein anzudocken und damit eine menschliche Körperzelle zu infizieren. Ausserdem können die Algorithmen voraussagen, ob die Variante bestehenden neutralisierenden Antikörpern ausweichen kann.
Die Computermodelle können nun dazu verwendet werden, diese Vorhersagen für die zig Milliarden theoretisch möglicher Varianten zu treffen, was weit über die Million Varianten hinausgehen, welche die Forschenden im Labor getestet haben.
Wirksamere Antikörpermedikamente
Die neue Methode kann nun auch dazu beitragen, die nächste Generation von Antikörpertherapien zu entwickeln. Mehrere solcher Antikörpermedikamente wurden zur Behandlung des ursprünglichen Sars-CoV-2-Virus entwickelt und in den USA und Europa zugelassen. Fünf davon mussten nachträglich wieder vom Markt genommen werden, weil sie sich gegen die Omikron-Variante als zu wenig wirksam erwiesen haben. Bei anderen Therapien, die sich noch in der Entwicklung befunden haben, wurde aus demselben Grund die Entwicklung eingestellt.
«Unsere Methode ermöglicht Forschenden zu ermitteln, welche Antikörper das grösste Potenzial haben, nicht nur aktuelle, sondern auch künftige Varianten wirksam zu neutralisieren», sagt Reddy. Die ETH-Wissenschaftler arbeiten bereits mit Biotechnologieunternehmen zusammen, die Covid-19-Antikörpertherapien der nächsten Generation entwickeln.
Immunevasive Varianten entdecken
Die an der ETH Zürich entwickelte Methode könnte sich ausserdem für die Entwicklung der nächsten Generation von Covid-19-Impfstoffen nützlich erweisen: Mit der Methode können potenzielle Virusvarianten identifiziert werden, die an das ACE2-Protein binden – und somit menschliche Zellen infizieren können –, aber von den Antikörpern geimpfter und genesener Personen nicht neutralisiert werden können.
«Natürlich weiss niemand, welche Variante von SARS-CoV-2 als nächstes auftauchen wird», wird Reddy zitiert. «Aber man kann Schlüsselmutationen identifizieren, die in künftigen Varianten vorkommen können, und dann im Voraus Impfstoffe entwickeln, die einen breiteren Schutz bieten gegen solche potenziellen zukünftigen Varianten.»
Hilfe für Behörden
Schliesslich sei die neue Methode für die Gesundheitsbehörden interessant, so die ETH. «Die Behörden können damit beim Auftreten einer neuen Virusvariante sehr schnell bestimmen, welche der bestehenden Impfstoffe auch noch gegen die neue Variante wirksam ist.»
Die Methode könne damit Entscheidungen im Zusammenhang mit Impfungen beschleunigen. So könne es beispielsweise sein, dass Personen, die einen bestimmten Impfstoff erhalten haben, Antikörper produzieren, die gegen eine neue Variante nicht wirksam seien, und daher so bald wie möglich Auffrischungsimpfungen erhalten sollten.
Reddy weist darauf hin, dass man die Technologie ausserdem an andere Viren anpassen könne, zum Beispiel an das Influenzavirus, das die saisonale Grippe verursacht, um auch dort in Zukunft mehr Informationen zu erhalten für die Entwicklung von Impfstoffen.
Diese Forschung wurde unterstützt durch das Botnar Research Centre for Child Health im Rahmen des «Fast Track Calls» zur Covid-19-Soforthilfe.
- Taft JM, Weber CR, Gao B, Ehling RA, Han J, Frei L, Metcalfe SW, Overath M, Yermanos A, Kelton W, Reddy ST: «Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the Sars-CoV-2 receptor binding domain», in «Cell», 31. August 2022 (Journal Pre-Proof).